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Singularities of the canonical partition functions of fluid systems with continuous
interaction potentials
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We observe that for finit&l andV, the canonical partition functio®y of a fluid system oN particles is a
polynomial of degreeN in variable V/NA3, which hasN zeros that depend only on the cluster integrals
b, (V,T), ... by(V,T). In the thermodynamic limit, if the zero distribution approaches the positive real axis,
a phase transition arises. The behavior of phase transition is determined solely by the zero distribution near the
positive real axis. Below the critical temperature, the Maxwell’'s equal-area rule must be used to obtain the
gas-liquid coexistence regime. Several examples are given.

DOI: 10.1103/PhysReVE.66.056102 PACS nuni)er05.70.Fh, 64.66-i, 05.20.Jj, 05.30-d

I. INTRODUCTION 1 . .
QN:WJ d3r - A3 W(r, .. ), (1)

In 1952, Yang and Legl] proposed a general theory of '
phase transition. They observed that in a finite volume, thgyhere
grand partition function of a real gas with a hard core is a
finite polynomial in fugacity and is determined completely Wy(rq, ... ) =exd —BVa(ri, ....rw)], 2
by the zeros of the polynomial. They showed that in the
thermodynamic limit if the zero distribution approaches thefor a classical system and
positive real axis, a phase transition arises. They further ap-
plied their theory to a ferromagnetic Ising model and to a”\NN(ﬂ, o ,FN)
attractive lattice gas model and proved the famous circle
theorem, which states that the zeros are distributed on the
unit circle in the complex fugacity plane. Fishigt], Jones
[3] and Grossmanet al. [4] extended this approach to the
canonical ensemble. Grossmaeinal. [4] observed that the  or 4 quantum system. Heké(ry, . . . fy) are the potential

free energy of a many-body system is represented by a finitgnergies of the classical systemB8=1kgT, A\
Laplace transform of the interaction phase volume, whicho (2 7mKk,T)~2is the thermal wavelength; are a com-

has an infinite number of zeros. Possible phase transitiongete set of normalized orthonormal wave functions of the
are classified by the behavior of the zero distribution near thﬁuantum systenE; are the energy eigenvalues.

positive real axis. Recently, this approach has been applied t0 For poth systemsQy may be written a$11,12
the classification of phase transitions in small syst&5ng). ’

=NV Wi(ry, . PR, .. e PR, (3)
I

Despite its spectacular success when applied to lattice Noq Valu
systems, t.he Yang—l__ee theory meets wit_h two _difficulti.es QN:E’ H {m{me,T)F ] 4
when applied to a fluid system with a continuous interaction tm} T=1 [T

potential. One difficulty is the evaluation of the Yang-Lee _ )
zeros. To our knowledge, only the zeros of some oneWhere the primed sunslmatlon goes over all the fetg that
dimensional1D) gases are knowiv—10]. Another difficulty ~ Satisfy the conditior®|_,Im=N, m=0,1,2.... b(V,T)

is that the Yang-Lee theory relies heavily on the condition ofare the cluster integrals, defined by

the hard core. As is well known, the condition of the hard 1

core is nothing but a good approximation for a real fluid _ j 3. .43 - -
system. The more accurate interaction of atoms of a real fluid bV T =gnaErn | dra - dnUire, o0, 5)
system is, for example, the Lennard-Jones potential. In this

case the hard core does not exist. The grand partition funawhere U,(ry, ... r;) are Ursell functions, determined by
tion is an infinite polynomial. It is impossible to introduce W;,W,, ... ,W,.

the zeros. In order to avoid these difficulties, we will turnto  Equation(4) is an exact identity. Henc®y may be ex-
the canonical ensemble. pressed as a polynomial of degrden variableV/N\2,

VAR AL
1)~ 2, A

Il. FORMULATION Qn

Let us consider a three-dimension@D) classical or N
guantum fluid system dfl particles in a finite volum&. The =AN(N,V,T)H

\%
: >3 Lt { —Z;(N,V,T)}, (6)
canonical partition function is j=1

NAS
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where A,(N,V,T) are coefficients that depend only on the (lim 1im)|yn=const (Qn—9n)=0. (15)
cluster integrald,(V,T), ... by(V,T). ;=2(N,V,T) are N— V-0

the zeros ofQy, i.e., Qu(z)=0. These zeros are deter-

mined only byb,(V,T), ... by(V,T). If someb,(V,T) are This means that in the thermodynamic limit, b&@k and

negative,Qy may have positive real zeros and the zero dis-Qy are identical. Their asymptotic zero distributions are also
tribution may cross the positive real axis. Sir@g>0 for  identical.

all physical values oN andV, Qy is analytic for finiteN and For a tempered and stable potential, the thermodynamic
V. These positive real zeros are not physical singularities ofimit exists [13], which implies that alN— o, V—o, V/N

Qu . In the thermodynamic limit, if the zero distribution ap- = const,

proaches the positive real axiQy may have a singularity

and a phase transition may arise. F(N,V,T)=—kgT InQy— —kgTIn Qy—NF(V/N,T).
It is well known that in the infinite volume limit, the (16)
cluster integrals become volume-indepen , l.e., . -
N nteg ) v u_ independaay, | The zeros are generally located in areas. The curve distribu-
J'mxbl(V'T)_bl(T)' @) tion is a limiting case of the area distribution. For finitie

the zeros are isolated points. As—», the zeros become
In Eq. (4), replacingb,(V,T) with b(T), we obtain the €verywhere dense within these areas. In this case, we

limiting canonical partition function may introduce the zero density, g(N,V,T,x,y)
N 1 vim =IimA$0AN/(NAS). HereAS=AxAy, AN is the number
ov=>"11 {—, b(T) = ] (8)  of zeros in the aredS. As N—x, V—x, V/N=const, we
fmp T=2 1M » obtain
Qy is also a polynomial of degrel in variableV/N\3, N
InQu= |nAN(NVT)+§) I 553 zJ(NVT)}

v N VAL
QN(W):EO An(NrT)<W)

—InAN(N,V,T) + NJ’ dxdy gN,V,T,x,y)
o)

N, T ﬁ v N, T 9
N( ’ )j:]_ N)\S Z]( ) ) ) ( )
X1In —3—z(N,V,T)}
where z;=2z;(N,T) are the zeros oRy, i.e., Qu(z)=0. NA
These zeros are determined only y(T), . .. ,by(T). For N Vv
finite N, if someb,(T) are negativeQy may have positive —In Qy=INAy(N,T)+ E In| —— z»(N,T)}
real zeros and the zero distribution may cross the positive NA .
real axis.
From Eq.(7), we obtain —In AN(N,T)+NJ dxdy gN,T,x,y)
lim A,(N,V,T)=A,(N,T), (10) a
V—ox
XIn| =——=5—2z(N,T)|, 1
lim z(N,V,T)=z(N,T). (11) NS X )} A
V—o

) o where() represent the zero distribution areas.
This means that for finiteN, as V—, the zeros ofQy

approach the zeros @) . Comparing Eq(17) with (16), we obtain the asymptotic zero
From Egs.(4) and (8), we obtain the recursive formulas distribution,
for the canonical partition functions

viN (lim lim)|yn=const Zj(N,V,T)=lim z(N,T)=2(T)
=33y 2, "Pn(V.T)Qn-n, (12) N N
=X+liy, (18
vl o .
= — 2 Nby(T) On-n, (13) (lim 1im)|yn=const  9(N,V,T,x,y)= lim g(N, T,x,y)
A° N n= N— oV —ow N— o
whereQy= Qy=1. =g(T,x,y).
(19

. ASYMPTOTIC ZERO DISTRIBUTION

The normalization condition is
Using Eqgs.(7), (10), and(1), it is easy to verify that

(lim lim )|V/N:const Zj(N,V,T)Z lim Zj(N,T), (14) deXdy QT,X,y)Zl. (20

N—owV—w N—oo
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We obtain 9*F(V.IN,T) 9?Fs(V.IN,T)
Cv=v,=~ aT? T aT?
F(VIN,T)=—kgT In Ay— Nk TJ dxdy g T,Xx, y
( ) B N sl | ydaT.xy) NJ 0 a(y) Ldy~[t-t (25
—Yo| V¢ .
Vv , N—)\3—zc—k|y|—|y
XIn W—x—w . (21)
Thus we obtain RP—Pc)|r—r ~|V—V’ and Cy_y,
From Eq.(21), we obtain ~|t]oL.
(aF) keT 9(T,x,y) V. FIRST-ORDER GAS-LIQUID PHASE TRANSITION
V) 2% g v 2 Below the critical temperature, the fluid has a first-order

TR gas-liquid phase transition. In the gas-liquid coexistence re-
gime, the fluid is not uniform. As is well known, in order to
) ) o obtain the gas-liquid coexistence regime, the exact canonical
Using Qy, we obtain the criterion for the occurrence of o ition function in the thermodynamic limit must be used
phase transition: AN—c, V—o, V/IN=const, the zero [13] |n writing out the canonical partition function E),
d|str|but|on ofQy approaches the positive real axis, with the \ye " make an implicit assumption that the system is uniform.
zero densityg(T,x,y) #0. o If we use Eq.(22) to calculate the equation of stat,
Using Qp, we obtain the criterion for the occurrence of _ P(V/N,T), then van der Waals loops will appe@ee Sec.
phase transition: AS—c, the zero distribution 0Qy ap- 12 1 of Ref[12)). It is necessary to use the Maxwell's equal-
proaches the positive real axis, with the zero densityyreq rule to obtain the gas-liquid coexistence regime, i.e., for

9(T,x,y)#0. _ _ _ _ viSv<uvg, the free energy is given by
Both criteria are equivalent. Since evaluatibgT) is

much easier than evaluatirty(V,T), in practical calcula-

Vg—U v—U
tions, we may prefer to us@y, instead of usingQy . Feodv, T)= #F(w T+ p— F(vg,T), (26)
g | g |
IV. CONTINUOUS PHASE TRANSITION wherev=V/N, vy andv, are the volumes per particle for the

pure gas and the pure liquid at the edges of the coexistence
Let us assume that the system has a continuous phagggime, respectively(vq,T) andF(v,,T) are given by Eq.
transition. AsN— o, the zeros close to the positive real axis (21). v; andv are given by
are assumed to be on lines, i.g;=x;+iy; with x;—z;
=k|y;|. Herez. is the critical value ofv/NA® andk is a P(vg, T)=P(v;,T), (27)
constant. Then the singular part of the free energy is given by

NP(vg,T)(vg—v))+F(vg, T)—F(v,,T)=0. (28

—Fs~> In
]

The obtained gas-liquid coexistence regime is exact.
In the single gas phase Fv) or the single liquid phase
(v<uv,), the free energy is still given by E¢R1).

N

\ )
N3~z Klyl—iy|dy, (23

Yo
=N g(y,t)In
Yo VI. EXAMPLES

and hence Let us give several examples.

A. 3D ideal Bose gas

JF Yo g(y,t)
P— PcN—(a—VS> ~ fﬁ v dy, The cluster integrals are given toy(T)=1"?[12]. Wy,
T yOW—Zc—kM—iy is given by
(24)

WN:; Splf(rpa—r1) - F(rpn—rn)], (29

whereg(y,t)=dj/(Ndy) is the zero density near the posi-
tive real axist=(T—T.)/T¢, andyy is a small number. If \here P are N! possible permutationsgp=1, and f(r)

g(y,t)~|y|® with 6>0 [14,15, then from Eq.(24) we ob- = exp(—ar?\?). Since allb, are positive, the zeros are com-
tain (P—Pg)|ro1 ~[V—V|°. plex or negative.

If b)(T) is independent oT, it follows that the zeros are Let us use the recursive formula of the canonical partition
independent off. From Eq.(23), we obtain function for ideal Bose gakl6]
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300 bosons B. 3D ideal Fermi gas
R 2 The cluster integrals are given by (T)=(—1)' 157
. . o N [12]. Wy is given by Eq.(29) with ép==*1 if the permuta-
S A tion P is even or odd. So the canonical partition function is

PO, LY DS

given by

1
N
[5,]
1
N
1
.
w
1
. =
.
. *
f;
o w
(5]

V
Ferml BOS

. . _.1 - Therefore, the zeros of the ideal Fermi gas are the negative

. e of those of ideal Bose gas, i.e}*"™'= —z}°%. From Fig. 1

* -t 2 we see that for finiteN, there eX|sts a zero distribution that
crosses the positive real axis, which does not correspond to
400 bosens the physical singularities of the canonical partition function.
. : . As N— oo, the zero distribution does not approach the posi-
. . 2f ., tive real axis. Hence no phase transition arises, as it should.
R D C. van der Waals gas
: el ‘3/ The equation of state of a van der Waals gas is given by
-2 S1.5 . -1 NS 'k\s
. ., Pl ?""l.”"."' . 2a
T L i P+ 7)(V—Nb)=NkBT. (34)
. - _2 - . . . i i
r The critical point is given by
o P 9°P
FIG. 1. The zeros 0030, and Q4 in variable V/NA® for 3D —1] =0, |=| =0, (35
ideal Bose gas. N T N T
giving
_1 s
WA= & QB On-nlB), 30 Po=a/2Th?  V,=3Nb, T,=8al2Tbks. (3

whereQy=1, O,(8)=VIN3~ 32 Itis easy to show that The equation of corresponding states is given by

Eq. (30) is a special case of the general recursive formula Eq.
(13). The zeros are shown in Fig. 1. We see that the zeros
close to the positive real axis are on lines. For exanyle,
=1.9653%—0.653 769 forN=300, and|y|=—0.585243
+1.732 6& for N=400. It is estimated that the zero density
g(y)~|y|° with =2. Hence near the critical point, we have
(P=Po)|t~(V—V)? for V>V, and Cy(t>0)—C(t=0) b 0 0 27
~t. HereV, is defined byV./N=\3/{(3/2) for givenT and FZZ mex;{

P. is given by P.=P(V./N,T). T, is defined byV/N

=\3/¢(3/2) for givenV and \;=h(27mksT,) Y2 As N
—oo, the zeroz,; closest to the positive real axis approaches
the posmve real axis with a scaling relation

P+ V%2)<3V' 1)=8T", @7

whereP’'=P/P., V'=V/V., andT'=T/T,.
It is easy to show that the fugaciyis given by

0|, (38

1-6 41

where #=Nb/V. Expandingé as a power series im and
comparing with

1 o)
|2y~ 2,| =1.5743\ 049459 (31) =33 2 by(T)Z, (39

<|Z

where z.=1/{(3/2)=0.382793. For example, z; we obtainb,(T). Qy is given by
=0.3793070.0936508 for N=300 andz;=0.383891
+0.081 288 3 for N=400. v b \NN VD

For givenT, there exists a first-order phase transion for QN(—) =(—3) > Dn(N,T)(—> , (40)
v<uv, With ve=V,/N=\%(3/2). Herevy=v,, v;=0, Nbj A%/ a=y Nb

F(v),T)=0. Hence Eq(26) becomes, for &v <uc, whereD (N, T) are coefficients
n 1 -

We have obtained the zeros ¢ for T'=6.75,T'=1,
Foodv,T)= iF(vC,T). (32 T'=27/32, andT’=0.75, as shown in Fig. 2. We have ob-
Ve served the following phenomena.
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FIG. 2. The zeros of) in variableV/Nb for van der Waals gas with'=6.75,T'=1, T'=27/32, andT’'=0.75.

(1) For T"=6.75, b)(T) almost alternate in sign. Fax N increases, the zero distribution does not move towards the
=300 andN=400, there exist some zero distributions thatpositive real axis. Hence no phase transition arises, as it
cross the positive real axis, which does not correspond to thghould.
physical singularities of the canonical partition function. As (2) ForT'<1, allb/(T) are positive. This means that the
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B’ 32T/ =27 hard sphere N=9

1.4 0.75
L2 0.5

1
0.25

0.8

0.2 0.4 0.6 0.8 1 1.2

0.6
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0.2
-0.75

v
P’ T =0.75 hard sphere N=10

-3 0.75
1 0.5
0.25

0.5

—1- 0.2 0.4 0.6 0.8 1 1.2

! -0.25
-0.5

-0.5
-0.75

FIG. 3. The van der Waals loops and the Maxwell construction  FIG. 4. The zeros 0f, and Q;, in variableV/4Nuv, for classi-
for T'=27/32 andT’'=0.75. cal hard-sphere gas.

- . D. 3D classical hard-sphere gas
coefficients ofQy are positive and hence the zeros@g§ are P g

negative or complex. The known virial coefficients argl7] a,=c=4vq/\°,

(3) ForT'=1, asN increases, the zero distribution moves 8/c’=0.625, a,/c3=0.286 95, as/c*=0.11025, ag/c®
towards the positive real axis. A4—x, the zero distribu- = 0-0389, 37/%6:0-0137v a8/c7=0.004.45, ) /_C8
tion approaches the positive real axis, giving the positive reaf 0-001 50,810/c”=0.000 51. From these virial coefficients,
zeroV,./Nb=3. For example, the zem closest to the posi- W€ ozbtaln the mﬂmte-golume Cluster |ntegr§tb§/c=—1,
tive real zero isz,=3.276 74-0.888 295 for N=300 and 03/ =1.6875, b,/c’=—3.55398, bs/c'=8.46876,
2,=3.3441+0.775 72 for N=400. The zeros near the posi- 26/C.~ —21.8381, b,/c?=59.4913, bg/c'=—168.75,
tive real axis are located on lines. For examplg|= by /c"=493.735, b;o/c”=—1480.48. The canonical parti-
474931 1.7160% for N=300 and |y|=—4.43295 t|_on funct|0rl is a/pgl)'/\‘nomal in varé)able//Nvo. For N
1+ 1.5544% for N=400. It is estimated thai=3 and hence 10 v (4vo/A")7ay are given by
(P=Po)lr=1,~(V-Vo). =2, Qy=2z—272, (s=5.062%—97%+4.5°,

(4) ForT' <1, asNincreases, the zero distribution moves
towards the positive real axis at a right angle. The zeros near 4= —14.21592+ 35z°— 3223+ 10.666 62*,
the positive real axis are located on lines.Ms-»~, the zero
distribution approaches the positive real axis, giving the
positive real zeroz, =V, /Nb. HereV,<V,<Vy. For ex-
ample, V4=3.2411V,, V,=0.54826&/;, V,~4.1V, for
T'=27/32 and V4=5.64309;, V,=0.48963V., V,
~3.8V, for T'=0.75(see Fig. 3 For example, the zerp,
closest to the positive real zeros=2.861 92+ 0.948 978
for T'=27/32, N=300 andz;=4.11852-0.426 80% for
T'=27/32, N=399; z,=3.69647-0.820717 for T’
=0.75, N=300 andz;=3.792 94+ 0.364 11 for T'=0.75,
N=400.

For T'<1, in the gas-liquid coexistence regime, v
<uvy,), the free energy is given by E(6). In the single gas
phase {>uv,) or the single liquid phasev(<v,), the free
energy is given by Eq21).

Q5=42.3438—131.03%%+ 167.962°— 104.162*
+26.0417°, qg=—131.029+484.078>

—784.33%%+688.5%%— 3247°+ 64.800%°,

q;,=416.432—1778.9%%+ 3449.1%°— 3848.2*
+2582.3%°—980.408°%+ 163.4027, qg=
— 135+ 6523.9°— 14 63&3+ 19 602.6*
—1679%°+9147.72°—2912.7%'
+416.1028, qo=4443.62—23910.52
+60669.4°—9481.8*+97 19%°— 67 868.%°
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+31139.%'—8541.0%%+1067.6%°, variable V/IN\3, with coefficients that depend on only the
cluster integrald,(V,T), ... by(V,T). The canonical par-
Qro=—14804.8+ 87 634.92— 24 74023+ 434 74%* tition function is determined completely by its zeros. In the
5 5 ; 8 infinite volume limit, the cluster integrals become volume
—521093°+43944@° 259432+ 102927 independent. Using,(T) to replaceb,(V,T) in Qy, we ob-
—24801.6%+2755.731°, (41) tain the limiting canonical partition functio@y, . For a tem-

pered and stable potential, the thermodynamic limit exists. In
wherez=V/4Nv, v, is the volume of a hard sphere. The the thermodynamic limitQy and Qy are identical. Their

zeros ofQq and Q;, are shown in Fig. 4. asymptotic zero distributions are also identical. The thermo-
dynamic limit guarantees the existence of the asymptotic
E. 1D classical hard rod gas zero distributions ofQy and Q. In the thermodynamic

. ) . limit, if the zero distribution approaches the positive real
This problem is exactly solvabld8]. It is found thatQy  ayis, a phase transition arises. The behavior of phase transi-

is a polynomial of degre®l in variableL/Na, tion is determined solely by the zero distribution near the
1 /Na\V/ L N—1\N positive real axis. Below the critical temperature, the l\/'lax.-

= | —| [==— _) , (42)  well's equal-area rule must be used to obtain the gas-liquid
NEL A Na N coexistence regime. Several examples are given. It is found

that for 3D ideal Bose gas and van der Waals gasNas
—, the zero distribution o0y approaches the positive real
axis and the zeros near the positive real axis are on lines,
which determines the behaviors of phase transitions.

wherelL is the length of the systema,is the length of a rod.
Therefore, the zeros ag=(N—1)/N and are positive. No
phase transition arises.

VII. CONCLUSION
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