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Singularities of the canonical partition functions of fluid systems with continuous
interaction potentials
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We observe that for finiteN andV, the canonical partition functionQN of a fluid system ofN particles is a
polynomial of degreeN in variable V/Nl3, which hasN zeros that depend only on the cluster integrals
b2(V,T), . . . ,bN(V,T). In the thermodynamic limit, if the zero distribution approaches the positive real axis,
a phase transition arises. The behavior of phase transition is determined solely by the zero distribution near the
positive real axis. Below the critical temperature, the Maxwell’s equal-area rule must be used to obtain the
gas-liquid coexistence regime. Several examples are given.
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I. INTRODUCTION

In 1952, Yang and Lee@1# proposed a general theory o
phase transition. They observed that in a finite volume,
grand partition function of a real gas with a hard core is
finite polynomial in fugacity and is determined complete
by the zeros of the polynomial. They showed that in t
thermodynamic limit if the zero distribution approaches t
positive real axis, a phase transition arises. They further
plied their theory to a ferromagnetic Ising model and to
attractive lattice gas model and proved the famous ci
theorem, which states that the zeros are distributed on
unit circle in the complex fugacity plane. Fisher@2#, Jones
@3# and Grossmannet al. @4# extended this approach to th
canonical ensemble. Grossmannet al. @4# observed that the
free energy of a many-body system is represented by a fi
Laplace transform of the interaction phase volume, wh
has an infinite number of zeros. Possible phase transit
are classified by the behavior of the zero distribution near
positive real axis. Recently, this approach has been applie
the classification of phase transitions in small systems@5,6#.

Despite its spectacular success when applied to la
systems, the Yang-Lee theory meets with two difficult
when applied to a fluid system with a continuous interact
potential. One difficulty is the evaluation of the Yang-Le
zeros. To our knowledge, only the zeros of some o
dimensional~1D! gases are known@7–10#. Another difficulty
is that the Yang-Lee theory relies heavily on the condition
the hard core. As is well known, the condition of the ha
core is nothing but a good approximation for a real flu
system. The more accurate interaction of atoms of a real fl
system is, for example, the Lennard-Jones potential. In
case the hard core does not exist. The grand partition fu
tion is an infinite polynomial. It is impossible to introduc
the zeros. In order to avoid these difficulties, we will turn
the canonical ensemble.

II. FORMULATION

Let us consider a three-dimensional~3D! classical or
quantum fluid system ofN particles in a finite volumeV. The
canonical partition function is
1063-651X/2002/66~5!/056102~7!/$20.00 66 0561
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QN5
1

N!l3NE d3r 1•••d3r NWN~rW1 , . . . ,rWN!, ~1!

where

WN~rW1 , . . . ,rWN!5exp@2bVN~rW1 , . . . ,rWN!#, ~2!

for a classical system and

WN~rW1 , . . . ,rWN!

5N!l3N(
i

C i~rW1 , . . . ,rWN!C i* ~rW1 , . . . ,rWN!e2bEi, ~3!

for a quantum system. HereVN(rW1 , . . . ,rWN) are the potential
energies of the classical system,b51/kBT, l
5h(2pmkBT)21/2 is the thermal wavelength,C i are a com-
plete set of normalized orthonormal wave functions of t
quantum system,Ei are the energy eigenvalues.

For both systems,QN may be written as@11,12#

QN5( 8
$ml %

)
l 51

N H 1

ml !
Fbl~V,T!

V

l3GmlJ , ~4!

where the primed summation goes over all the sets$ml% that
satisfy the condition( l 51

N lml5N, ml50,1,2, . . . . bl(V,T)
are the cluster integrals, defined by

bl~V,T!5
1

Vl!l3(l 21)E d3r 1•••d3r lUl~rW1 , . . . ,rW l !, ~5!

where Ul(rW1 , . . . ,rW l) are Ursell functions, determined b
W1 ,W2 , . . . ,Wl .

Equation~4! is an exact identity. HenceQN may be ex-
pressed as a polynomial of degreeN in variableV/Nl3,

QNS V

Nl3D5 (
n50

N

An~N,V,T!S V

Nl3D n

5AN~N,V,T!)
j 51

N F V

Nl3 2zj~N,V,T!G , ~6!
©2002 The American Physical Society02-1
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whereAn(N,V,T) are coefficients that depend only on th
cluster integralsb2(V,T), . . . ,bN(V,T). zj5zj (N,V,T) are
the zeros ofQN , i.e., QN(zj )50. These zeros are dete
mined only byb2(V,T), . . . ,bN(V,T). If somebl(V,T) are
negative,QN may have positive real zeros and the zero d
tribution may cross the positive real axis. SinceQN.0 for
all physical values ofN andV, QN is analytic for finiteN and
V. These positive real zeros are not physical singularities
QN . In the thermodynamic limit, if the zero distribution ap
proaches the positive real axis,QN may have a singularity
and a phase transition may arise.

It is well known that in the infinite volume limit, the
cluster integrals become volume-independent@12#, i.e.,

lim
V→`

bl~V,T!5bl~T!. ~7!

In Eq. ~4!, replacingbl(V,T) with bl(T), we obtain the
limiting canonical partition function

QN[( 8
$ml %

)
l 51

N H 1

ml !
Fbl~T!

V

l3GmlJ , ~8!

QN is also a polynomial of degreeN in variableV/Nl3,

QNS V

Nl3D5 (
n50

N

An~N,T!S V

Nl3D n

5AN~N,T!)
j 51

N F V

Nl3 2zj~N,T!G , ~9!

where zj5zj (N,T) are the zeros ofQN , i.e., QN(zj )50.
These zeros are determined only byb2(T), . . . ,bN(T). For
finite N, if somebl(T) are negative,QN may have positive
real zeros and the zero distribution may cross the posi
real axis.

From Eq.~7!, we obtain

lim
V→`

An~N,V,T!5An~N,T!, ~10!

lim
V→`

zj~N,V,T!5zj~N,T!. ~11!

This means that for finiteN, as V→`, the zeros ofQN
approach the zeros ofQN .

From Eqs.~4! and ~8!, we obtain the recursive formula
for the canonical partition functions

QN5
V

l3

1

N (
n51

N

nbn~V,T!QN2n , ~12!

QN5
V

l3

1

N (
n51

N

nbn~T!QN2n , ~13!

whereQ05Q051.

III. ASYMPTOTIC ZERO DISTRIBUTION

Using Eqs.~7!, ~10!, and~11!, it is easy to verify that

~ lim
N→`

lim
V→`

!uV/N5const zj~N,V,T!5 lim
N→`

zj~N,T!, ~14!
05610
-

of
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~ lim
N→`

lim
V→`

!uV/N5const ~QN2QN!50. ~15!

This means that in the thermodynamic limit, bothQN and
QN are identical. Their asymptotic zero distributions are a
identical.

For a tempered and stable potential, the thermodyna
limit exists @13#, which implies that asN→`, V→`, V/N
5const,

F~N,V,T!52kBT ln QN→2kBT ln QN→N f~V/N,T!.
~16!

The zeros are generally located in areas. The curve distr
tion is a limiting case of the area distribution. For finiteN,
the zeros are isolated points. AsN→`, the zeros become
everywhere dense within these areas. In this case,
may introduce the zero density, g(N,V,T,x,y)
5 lim

DS→0
DN/(NDS). HereDS5DxDy, DN is the number

of zeros in the areaDS. As N→`, V→`, V/N5const, we
obtain

ln QN5 ln AN~N,V,T!1(
j 51

N

lnF V

Nl3 2zj~N,V,T!G
→ ln AN~N,V,T!1NE

V
dxdy g~N,V,T,x,y!

3 lnF V

Nl3 2z~N,V,T!G
→ ln QN5 ln AN~N,T!1(

j 51

N

lnF V

Nl3 2zj~N,T!G
→ ln AN~N,T!1NE

V
dxdy g~N,T,x,y!

3 lnF V

Nl3 2z~N,T!G , ~17!

whereV represent the zero distribution areas.

Comparing Eq.~17! with ~16!, we obtain the asymptotic zer
distribution,

~ lim
N→`

lim
V→`

!uV/N5const zj~N,V,T!5 lim
N→`

z~N,T!5z~T!

5x1 iy , ~18!

~ lim
N→`

lim
V→`

!uV/N5const g~N,V,T,x,y!5 lim
N→`

g~N,T,x,y!

5g~T,x,y!.
~19!

The normalization condition is

E
V

dxdy g~T,x,y!51. ~20!
2-2
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We obtain

F~V/N,T!52kBT ln AN2NkBTE
V

dxdy g~T,x,y!

3 lnF V

Nl3 2x2 iy G . ~21!

From Eq.~21!, we obtain

P52S ]F

]VD
T

5
kBT

l3 E
V

dxdy
g~T,x,y!

V

Nl3 2x2 iy

. ~22!

Using QN , we obtain the criterion for the occurrence
phase transition: AsN→`, V→`, V/N5const, the zero
distribution ofQN approaches the positive real axis, with t
zero densityg(T,x,y)Þ0.

Using QN , we obtain the criterion for the occurrence
phase transition: AsN→`, the zero distribution ofQN ap-
proaches the positive real axis, with the zero dens
g(T,x,y)Þ0.

Both criteria are equivalent. Since evaluatingbl(T) is
much easier than evaluatingbl(V,T), in practical calcula-
tions, we may prefer to useQN instead of usingQN .

IV. CONTINUOUS PHASE TRANSITION

Let us assume that the system has a continuous p
transition. AsN→`, the zeros close to the positive real ax
are assumed to be on lines, i.e.,zj5xj1 iy j with xj2zc
5kuyj u. Here zc is the critical value ofV/Nl3 and k is a
constant. Then the singular part of the free energy is given

2Fs;(
j

lnF V

Nl3 2zj G
5NE

2y0

y0
g~y,t !lnF V

Nl3 2zc2kuyu2 iy Gdy, ~23!

and hence

P2Pc;2S ]Fs

]V D
T

;E
2y0

y0 g~y,t !

V

Nl3 2zc2kuyu2 iy

dy,

~24!

whereg(y,t)5d j /(Ndy) is the zero density near the pos
tive real axis,t5(T2Tc)/Tc , andy0 is a small number. If
g(y,t);uyud with d.0 @14,15#, then from Eq.~24! we ob-
tain (P2Pc)uT5Tc

;uV2Vcud.

If bl(T) is independent ofT, it follows that the zeros are
independent ofT. From Eq.~23!, we obtain
05610
y

se

y

CV5Vc
52T

]2F~Vc /N,T!

]T2 ;2T
]2Fs~Vc /N,T!

]T2

;E
2y0

y0 g~y!

F Vc

Nl3
2zc2kuyu2 iy G 2 dy;utud21. ~25!

Thus we obtain (P2Pc)uT5Tc
;uV2Vcud and CV5Vc

;utud21.

V. FIRST-ORDER GAS-LIQUID PHASE TRANSITION

Below the critical temperature, the fluid has a first-ord
gas-liquid phase transition. In the gas-liquid coexistence
gime, the fluid is not uniform. As is well known, in order t
obtain the gas-liquid coexistence regime, the exact canon
partition function in the thermodynamic limit must be us
@13#. In writing out the canonical partition function Eq.~4!,
we make an implicit assumption that the system is unifor
If we use Eq. ~22! to calculate the equation of state,P
5P(V/N,T), then van der Waals loops will appear~see Sec.
12.1 of Ref.@12#!. It is necessary to use the Maxwell’s equa
area rule to obtain the gas-liquid coexistence regime, i.e.,
v l<v<vg , the free energy is given by

Fcoe~v,T!5
vg2v
vg2v l

F~v l ,T!1
v2v l

vg2v l
F~vg ,T!, ~26!

wherev[V/N, vg andv l are the volumes per particle for th
pure gas and the pure liquid at the edges of the coexiste
regime, respectively.F(vg ,T) andF(v l ,T) are given by Eq.
~21!. v l andvg are given by

P~vg ,T!5P~v l ,T!, ~27!

NP~vg ,T!~vg2v l !1F~vg ,T!2F~v l ,T!50. ~28!

The obtained gas-liquid coexistence regime is exact.
In the single gas phase (v.vg) or the single liquid phase

(v,v l), the free energy is still given by Eq.~21!.

VI. EXAMPLES

Let us give several examples.

A. 3D ideal Bose gas

The cluster integrals are given bybl(T)5 l 25/2 @12#. WN
is given by

WN5(
P

dP@ f ~rWP12rW1!••• f ~rWPN2rWN!#, ~29!

where P are N! possible permutations,dP51, and f (rW)
5exp(2pr2/l2). Since allbl are positive, the zeros are com
plex or negative.

Let us use the recursive formula of the canonical partit
function for ideal Bose gas@16#
2-3
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QN~b!5
1

N (
n51

N

Q1~nb!QN2n~b!, ~30!

whereQ051, Q1(b)5V/l3;b23/2. It is easy to show tha
Eq. ~30! is a special case of the general recursive formula
~13!. The zeros are shown in Fig. 1. We see that the ze
close to the positive real axis are on lines. For example,uyu
51.965 35x20.653 769 forN5300, anduyu520.585 243
11.732 66x for N5400. It is estimated that the zero dens
g(y);uyud with d52. Hence near the critical point, we hav
(P2Pc)uT;(V2Vc)

2 for V.Vc and CV(t.0)2CV(t50)
;t. HereVc is defined byVc /N5l3/z(3/2) for givenT and
Pc is given by Pc5P(Vc /N,T). Tc is defined byV/N
5lc

3/z(3/2) for given V and lc5h(2pmkBTc)
21/2. As N

→`, the zeroz1 closest to the positive real axis approach
the positive real axis with a scaling relation

uz12zcu51.5743N20.494 596, ~31!

where zc51/z(3/2)50.382 793. For example, z1
50.379 30760.093 650 8i for N5300 and z150.383 891
60.081 288 3i for N5400.

For givenT, there exists a first-order phase transion
v,vc , with vc5Vc /N5l3/z(3/2). Herevg5vc , v l50,
F(v l ,T)50. Hence Eq.~26! becomes, for 0,v,vc ,

Fcoe~v,T!5
v
vc

F~vc ,T!. ~32!

FIG. 1. The zeros ofQ300 andQ400 in variableV/Nl3 for 3D
ideal Bose gas.
05610
q.
s

s
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B. 3D ideal Fermi gas

The cluster integrals are given bybl(T)5(21)l 21l 25/2

@12#. WN is given by Eq.~29! with dP561 if the permuta-
tion P is even or odd. So the canonical partition function
given by

Q N
FermiS V

Nl3D5~21!NQ N
BoseS 2

V

Nl3D . ~33!

Therefore, the zeros of the ideal Fermi gas are the nega
of those of ideal Bose gas, i.e.,zj

Fermi52zj
Bose. From Fig. 1

we see that for finiteN, there exists a zero distribution tha
crosses the positive real axis, which does not correspon
the physical singularities of the canonical partition functio
As N→`, the zero distribution does not approach the po
tive real axis. Hence no phase transition arises, as it sho

C. van der Waals gas

The equation of state of a van der Waals gas is given

S P1
N2a

V2 D ~V2Nb!5NkBT. ~34!

The critical point is given by

S ]P

]VD
T

50, S ]2P

]V2D
T

50, ~35!

giving

Pc5a/27b2, Vc53Nb, Tc58a/27bkB . ~36!

The equation of corresponding states is given by

S P81
3

V82D ~3V821!58T8, ~37!

whereP85P/Pc , V85V/Vc , andT85T/Tc .
It is easy to show that the fugacityz is given by

b

l3 z5
u

12u
expF u

12u
2

27

4T8
uG , ~38!

where u5Nb/V. Expandingu as a power series inz and
comparing with

N

V
5

1

l3 (
l 51

`

lbl~T!zl , ~39!

we obtainbl(T). QN is given by

QNS V

NbD5S b

l3D N

(
n51

N

Dn~N,T!S V

NbD n

, ~40!

whereDn(N,T) are coefficients.
We have obtained the zeros ofQN for T856.75, T851,

T8527/32, andT850.75, as shown in Fig. 2. We have ob
served the following phenomena.
2-4
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FIG. 2. The zeros ofQN in variableV/Nb for van der Waals gas withT856.75, T851, T8527/32, andT850.75.
a
t
s

the
s it

e

~1! For T856.75, bl(T) almost alternate in sign. ForN
5300 andN5400, there exist some zero distributions th
cross the positive real axis, which does not correspond to
physical singularities of the canonical partition function. A
05610
t
he

N increases, the zero distribution does not move towards
positive real axis. Hence no phase transition arises, a
should.

~2! For T8<1, all bl(T) are positive. This means that th
2-5
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coefficients ofQN are positive and hence the zeros ofQN are
negative or complex.

~3! For T851, asN increases, the zero distribution mov
towards the positive real axis. AsN→`, the zero distribu-
tion approaches the positive real axis, giving the positive r
zeroVc /Nb53. For example, the zeroz1 closest to the posi-
tive real zero isz153.276 7460.888 295i for N5300 and
z153.344160.775 72i for N5400. The zeros near the pos
tive real axis are located on lines. For example,uyu5
24.749 3111.716 05x for N5300 and uyu524.432 95
11.554 43x for N5400. It is estimated thatd53 and hence
(P2Pc)uT5Tc

;(V2Vc)
3.

~4! For T8,1, asN increases, the zero distribution mov
towards the positive real axis at a right angle. The zeros n
the positive real axis are located on lines. AsN→`, the zero
distribution approaches the positive real axis, giving
positive real zerozr5Vr /Nb. Here Vl,Vr,Vg . For ex-
ample, Vg53.241 11Vc , Vl50.548 266Vc , Vr'4.1Vc for
T8527/32 and Vg55.643 09Vc , Vl50.489 631Vc , Vr

'3.8Vc for T850.75 ~see Fig. 3!. For example, the zeroz1

closest to the positive real zero isz152.861 9260.948 978i
for T8527/32, N5300 and z154.118 5260.426 805i for
T8527/32, N5399; z153.696 4760.820 717i for T8
50.75, N5300 andz153.792 9460.364 11i for T850.75,
N5400.

For T8,1, in the gas-liquid coexistence regime (v l<v
<vg), the free energy is given by Eq.~26!. In the single gas
phase (v.vg) or the single liquid phase (v,v l), the free
energy is given by Eq.~21!.

FIG. 3. The van der Waals loops and the Maxwell construct
for T8527/32 andT850.75.
05610
al

ar

e

D. 3D classical hard-sphere gas

The known virial coefficients are@17# a25c54v0 /l3,
a3 /c250.625, a4 /c350.286 95, a5 /c450.110 25, a6 /c5

50.0389, a7 /c650.0137, a8 /c750.004 45, a9 /c8

50.001 50,a10/c950.000 51. From these virial coefficients
we obtain the infinite-volume cluster integralsb2 /c521,
b3 /c251.6875, b4 /c3523.553 98, b5 /c458.468 76,
b6 /c55221.8381, b7 /c6559.4913, b8 /c752168.75,
b9 /c85493.735, b10/c9521480.48. The canonical parti
tion function is a polynomial in variableV/Nv0. For N
51 –10, QN5(4v0 /l3)NqN are given by

q15z, q252z22z2, q355.0625z29z214.5z3,

q45214.215 92z135z2232z3110.666 67z4,

q5542.3438z2131.037z21167.969z32104.167z4

126.0417z5, q652131.029z1484.078z2

2784.331z31688.5z42324z5164.8001z6,

q75416.439z21778.91z213449.17z323848.2z4

12582.33z52980.408z61163.402z7, q85

21350z16523.9z2214 636z3119 602.6z4

216 799z519147.72z622912.71z7

1416.102z8, q954443.62z223 910.5z2

160 669.4z329481.8z4197 197z5267 868.7z6

FIG. 4. The zeros ofQ9 andQ10 in variableV/4Nv0 for classi-
cal hard-sphere gas.

n

2-6
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131 139.1z728541.03z811067.63z9,

q105214 804.8z187 634.9z2224 7402z31434 743z4

2521 093z51439 440z62259 430z71102 927z8

224 801.6z912755.73z10, ~41!

wherez5V/4Nv0 , v0 is the volume of a hard sphere. Th
zeros ofQ9 andQ10 are shown in Fig. 4.

E. 1D classical hard rod gas

This problem is exactly solvable@18#. It is found thatQN
is a polynomial of degreeN in variableL/Na,

QN5
1

N! S Na

l D NS L

Na
2

N21

N D N

, ~42!

whereL is the length of the system,a is the length of a rod.
Therefore, the zeros arezj5(N21)/N and are positive. No
phase transition arises.

VII. CONCLUSION

Our observation is that for finiteN and V, the canonical
partition functionQN of a classical or quantum fluid ofN
particles may be expressed as a polynomial of degreeN in
ns
,

s.

05610
variable V/Nl3, with coefficients that depend on only th
cluster integralsb2(V,T), . . . ,bN(V,T). The canonical par-
tition function is determined completely by its zeros. In t
infinite volume limit, the cluster integrals become volum
independent. Usingbl(T) to replacebl(V,T) in QN , we ob-
tain the limiting canonical partition functionQN . For a tem-
pered and stable potential, the thermodynamic limit exists
the thermodynamic limit,QN and QN are identical. Their
asymptotic zero distributions are also identical. The therm
dynamic limit guarantees the existence of the asympt
zero distributions ofQN and QN . In the thermodynamic
limit, if the zero distribution approaches the positive re
axis, a phase transition arises. The behavior of phase tra
tion is determined solely by the zero distribution near t
positive real axis. Below the critical temperature, the Ma
well’s equal-area rule must be used to obtain the gas-liq
coexistence regime. Several examples are given. It is fo
that for 3D ideal Bose gas and van der Waals gas, aN
→`, the zero distribution ofQN approaches the positive rea
axis and the zeros near the positive real axis are on lin
which determines the behaviors of phase transitions.
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